2.1 – Represent Relations and Functions

Relation – a pairing of input values to output values

Domain - the set of input values

Range - the set of output values

KEY CONCEPT

For Your Notebook

Representing Relations

A relation can be represented in the following ways.

Example 1 Consider the relation given by the ordered pairs (-2,-3), (-1,1), (1,3), (2,-2), and (3,1)

a. Identify the domain and range

b. Represent the relation using a graph and a mapping diagram

d: {-2,-1,1,2,3}

r: {-3,-2,1,3}

Function – a relation where each input has exactly on output, if any input has more than one output, the relation is NOT a function

Example 2 Tell whether the relation is a function. Explain

a. Input Output

-3 2

-1 3
2
4 --4

KEY CONCEPT

For Your Notebook

Vertical Line Test

A relation is a function if and only if no vertical line intersects the graph of the relation at more than one point.

Function

Not a function

Graphing an equation in two variables

KEY CONCEPT

For Your Notebook

Graphing Equations in Two Variables

To graph an equation in two variables, follow these steps:

STEP 1 Construct a table of values.

STEP 2 Plot enough points from the table to recognize a pattern.

STEP 3 Connect the points with a line or a curve.

Example 4 Graph the equation y = -2x - 1

$$y=-2(-2)-1=3$$

$$y=-2(-1)-1=1$$

$$y=-2(0)-1=-1$$

$$y=-2(1)-1=-3$$

$$y=-2(2)-1=-5$$

Linear Function – a function that can be written in the form y = mx + b

Functional Notation – written f(x), meaning "the value of the function at x."

Example 5 Tell whether the function is linear. Then evaluate the function when x = -4

a.
$$f(s) = -x^2 - 2x + 7$$

 $f(-4) = -(-4)^2 - 2(-4) + 7$
 $= -16 + 8 + 7$
 $f(-4) = -1$

b.
$$f(x) = 5x + 8$$

 $f(-4) = 5(-4) + 8$
 $= -20 + 8$
 $f(-4) = -12$

Non linear

Linear

HW: 3-8, 10-13, 16-23, 28-32 even, 34-39

on p. 72 for Exs. 3-9

REPRESENTING RELATIONS Identify the domain and range of the given relation. Then represent the relation using a graph and a mapping diagram.

- **3.** (-2, 3), (1, 2), (3, -1), (-4, -3)
- 4, (5, -2), (-3, -2), (3, 3), (-1, -1)
- 5. (6, -1), (-2, -3), (1, 8), (-2, 5)
- 6. (-7, 4), (2, -5), (1, -2), (-3, 6)
- 7. (5, 20), (10, 20), (15, 30), (20, 30)
- 8. (4, -2), (4, 2), (16, -4), (16, 4)

XAMPLE 2

潭2.73 Exs. 10-20 IDENTIFYING FUNCTIONS Tell whether the relation is a function. Explain.

ERROR ANALYSIS Describe and correct the error in the student's work.

The relation given by the ordered pairs (-4, 2), (-1, 5), (3, 6), and (7, 2) is not a function because the inputs -4 and 7 are both mapped to the output 2.

0	1	2	1	0
-	-	-	1	0

The relation given by the table is a function because there is only one value of x for each value of y.

IDENTIFYING FUNCTIONS Tell whether the relation is a function. Explain.

- 16. (3, -2), (0, 1), (1, 0), (-2, -1), (2, -1)
- (17.) (2, -5), (-2, 5), (-1, 4), (-2, 0), (3, -4)
- **18.** (0, 1), (1, 0), (2, 3), (3, 2), (4, 4)
- 19. (-1, -1), (2, 5), (4, 8), (-5, -9), (-1, -5)
- 20. \star MULTIPLE CHOICE The relation given by the ordered pairs (-6, 3), (-2, 4), (1, 5), and (4, 0) is a function. Which ordered pair can be included with this relation to form a new relation that is also a function?
- (B) (6, 3)
- **©** (−2, 19)
- (1, 4)

AMPLE 3

p. 74 Exs. 21-23 VERTICAL LINE TEST Use the vertical line test to tell whether the relation is a function.

23.

24. ★ SHORT RESPONSE Explain why a relation is not a function if a vertical line intersects the graph of the relation more than once.

AMPLE 4

2.75 Exs. 25-33

- GRAPHING EQUATIONS Graph the equation. **25.** y = x + 2
 - 26. y = -x + 5

- **28.** y = 5x 3
- **29.** y = 2x 7
- **30.** y = -3x + 2

- 31. y = -2x
- **32.** $y = \frac{1}{2}x + 2$
- 33. $y = -\frac{3}{4}x 1$

on p. 75 for Exs. 34-39 EVALUATING FUNCTIONS Tell whether the function is linear. Then evaluate the function for the given value of x.

34.
$$f(x) = x + 15$$
; $f(8)$

35.
$$f(x) = x^2 + 1$$
; $f(-3)$

36.
$$f(x) = |x| + 10$$
; $f(-4)$

37.
$$f(x) = 6$$
; $f(2)$

38.
$$g(x) = x^3 - 2x^2 + 5x - 8$$
; $g(-5)$

39.
$$h(x) = 7 - \frac{2}{3}x$$
; $h(15)$