7.3 – Use Functions involving e

The Euler Number (e) – or the natural base e represents the number ≈ 2.718281828

The expression $\left(1+\frac{1}{n}\right)^n$ approaches e as the value of n increases. For example:

n	10	100	1,000	10,000	100,000	1,000,000
$\left(1+\frac{1}{n}\right)^n$	2.59374	2.70481	2.71692	2.71815	2.71827	2.71828

Example 1 Simplify natural base expressions

a.
$$e^2 \cdot e^5$$

$$= 2 + 5$$

$$= 0$$

$$= 0$$

b.
$$\frac{12e^4}{3e^3}$$

$$= \left(\frac{12}{3}\right)e^{4-3}$$

$$= 4e'$$

c.
$$(5e^{-3x})^2$$

= $5^2e^{-3x(2)}$
= $25e^{-6x}$

Example 2 Evaluate natural base expressions

a.
$$e^4 \approx 54.60$$

b.
$$e^{-0.09} \approx 0.91$$

Natural Base Exponential Function

$$y = ae^{rx}$$

Growth: a > 0 and r > 0

Decay: a > 0 and r < 0

KEY CONCEPT

For Your Notebook

Natural Base Functions

A function of the form $y = ae^{rx}$ is called a *natural base exponential function*.

- If a > 0 and r > 0, the function is an exponential growth function.
- If a > 0 and r < 0, the function is an exponential decay function.

The graphs of the basic functions $y = e^x$ and $y = e^{-x}$ are shown below.

a.
$$y = 3e^{0.25x}$$
 $q > 0$ $r > 0$

$$\Rightarrow growth$$

b.
$$y = e^{-0.75(x-2)} + 1$$

(1) Use $y = e^{-0.75x}$

Continuously Compounded Interest

7.1 Formula $A = P\left(1 + \frac{r}{n}\right)^{nt}$, so as the number of times interest is compounded (n) increases infinitely, we are left with the expression for e from the beginning of the lesson. And the new Formula for Continuously Compounded Interest is:

$$A = Pe^{rt}$$

Model continuously compounded interest

You deposit \$4000 in an account the pays 6% annual interest compounded continuously. What is the balance after 1 year?

?
$$A = Pe^{rt}$$
 $P = 4000$
 $r = 6\% = .06$
 $A = 40000 = 06(1)$
 $A = 44247.35$

= 492

Exs. 3-18

SIMPLIFYING EXPRESSIONS Simplify the expression.

3.
$$e^3 \cdot e^4$$

4.
$$e^{-2} \cdot e^{6}$$

$$(5.)(2e^{3x})^3$$

6.
$$(2e^{-2})^{-4}$$

7.
$$(3e^{5x})^{-1}$$

8.
$$e^x \cdot e^{-3x} \cdot e^4$$
 9. $\sqrt{9}e^6$

9.
$$\sqrt{9e^6}$$

10.
$$e^x \cdot 5e^{x+3}$$

11.
$$\frac{36}{e^3}$$

12.
$$\frac{4e^x}{e^{4x}}$$

12.
$$\frac{4e^x}{e^{4x}}$$
 13. $\sqrt[3]{8e^{9x}}$

14.
$$\frac{6e^{4x}}{8e}$$

EXAMPLE 2

on p. 492 for Exs. 19-30 EVALUATING EXPRESSIONS Use a calculator to evaluate the expression.

20.
$$e^{-3/4}$$

21.
$$e^{2.2}$$

22.
$$e^{1/2}$$

23.
$$e^{-2/5}$$

26.
$$e^{-4}$$

27.
$$2e^{-0.3}$$

28.
$$5e^{2/3}$$

29.
$$-6e^{2.4}$$

30.
$$0.4e^{4.1}$$

GROWTH OR DECAY Tell whether the function is an example of exponential growth or exponential decay.

31.
$$f(x) = 3e^{-x}$$

31.
$$f(x) = 3e^{-x}$$
 32. $f(x) = \frac{1}{3}e^{4x}$ **33.** $f(x) = e^{-4x}$

33.
$$f(x) = e^{-4x}$$

34.
$$f(x) = \frac{3}{5}e^x$$

35.
$$f(x) = \frac{1}{4}e^{-5x}$$
 36. $f(x) = e^{3x}$ **37.** $f(x) = 2e^{4x}$

36.
$$f(x) = e^{3x}$$

37.
$$f(x) = 2e^{4x}$$

38.
$$f(x) = 4e^{-2x}$$

EXAMPLE 3

on p. 493 for Exs. 39-50 MATCHING GRAPHS Match the function with its graph.

39.
$$y = 0.5e^{0.5x}$$

40.
$$y = 2e^{0.5x}$$

41.
$$y = e^{0.5x} + 2$$

GRAPHING FUNCTIONS Graph the function. State the domain and range.

42.
$$y = e^{-2x}$$

43.
$$y = 3e^x$$

44.
$$y = 0.5e^x$$

45.
$$y = 2e^{-3x} - 1$$

46.
$$y = 2.5e^{-0.5x} + 2$$

47.
$$y = 0.6e^{x-2}$$

48.
$$f(x) = \frac{1}{2}e^{x+3} - 2$$

49.
$$g(x) = \frac{4}{3}e^{x-1} + 1$$

50.
$$h(x) = e^{-2(x+1)} - 3$$

MPLE 5 495 Exs. 57-58 57.) FINANCE You deposit \$2000 in an account that pays 4% annual interest compounded continuously. What is the balance after 5 years?

58. FINANCE You deposit \$800 in an account that pays 2.65% annual interest compounded continuously. What is the balance after 12.5 years?